NEWTON 7.0 FT500 - in Vivo Imaging – Witec AG

Art No | 1211 9740 1
request only
request only

IN VIVO 3D optical tomography - NOW ACCESSIBLE TO EVERYONE.

 

Description

The Newton 7.0 is an innovative optical bioluminescence, fluorescence, and 3D tomographic imaging system designed with the user in mind.

It is ideal for in vivo, ex vivo and in vitro imaging applications, allowing for simultaneous imaging of multiple animals or samples at a time. It’s advanced features and software are easy to navigate and optimized for a multi-user interface. Furthermore, the intuitive workflow and advanced system sensitivity facilitates time-saving signal acquisition for longitudinal studies.

This highly sensitive optical imaging system is dedicated to pre-clinical imaging of small animals in vivo, and may also be used on a variety of in vitro and ex vivo samples. It combines the best optics and animal handling features for optimum scientific images and results. The Newton 7.0 systems are capable of bioluminescence, fluorescence as well as 3D tomographic imaging. The system is:

  • User-friendly
  • Does not require any radiation to acquire images
  • Is non-invasive, allowing for longitudinal studies
  • Allows for up to 5 mice or 3 rats to be imaged simultaneously

 

WEBINAR

Vilber’s Newton 7.0 FT Series – in vivo 3D Optical Tomography now accessible to everyone

This free educational webinar hosted by Scintica Instrumentation introduced the brand new pre-clinical imaging system from Vilber, the Newton 7.0 FT Series. This new range of in-vivo imaging systems offer traditional 2D Bioluminescence and Fluorescence imaging, integrating an innovative 3D Optical Tomography technique to provide even further details in terms of signal structure and localization.

Click here for the video (60min.)

Newton Webinar

Powerful Fluorescence Excitation

The Newton 7.0 offers 8 excitation channels in the visible RGB and near infrared spectrums. The very tight LED spectrum is additionally constrained with a very narrow excitation filter; these excitation sources are categorized as a Laser Class II due to their intense power. Movement of the excitation source over the entire FOV ensures consistent and reproducible results over the course of a longitudinal study.

Full Spectrum Tunability

8 excitation channels and 8 emission filters are available to cover the complete spectrum from Blue to infra-red.

Narrow bandpass filters are used for both excitation and emission to reduce cross talk between dies, allowing for up to 3 dyes to be imaged simultaneously.

Macro-imaging to large throughput studies

Vilber’s intelligent darkroom architecture allows for fully automated movement of the camera (Z-axis) and animal pad (X/Y axis) to move through both the macro imaging FOV (6x6cm) to the full FOV (20x20cm) for imaging up to 5 mice.

 

Spectral Unmixing

Spectral unmixing is possible for both bioluminescence and fluorescence imaging when different luciferase enzymes or fluorescent dies are used.

The includes algorithms to remove crosstalk between the different signals, allowing for each channel to contain signal from only one reporter.

3D Optical Tomography

An integrated 3D tomography module allows both bioluminescence and fluorescence signals to be reconstructed in 3D and overlaid within a topographical model of the imaging subject.

For better understanding of anatomical and deeper tissue structures, the digital organ library allows for superimposition of the mouse organs and bones onto the topographical model.

 

State-or-the-art camera technology

  • Scientific grade 16-bit CCD
  • -90°C delta cooling
  • f/0.7 aperture
  • 10 megapixel image resolution
  • 4.8 Optical Density

The advanced camera and optics provide increased sensitivity to either bioluminescence or fluorescence signals, with a very low signal to noise ratio. The high optical density allows for samples with both very low and high signals to be imaged without saturation, allowing for quantifiable results.

Imaging Modes – Fluorescence

Easily detect fluorescent molecules and reporters at the picogram level in the tissue of interest using Vilber’s dynamic range of excitation emission wavelengths.

Newton Fluorescent molecules

Imaging Modes – Fluorescence

For deeper tissue penetration and reduction of autofluorescence background, infrared (IF) and near-infrared (NIR) molecules can also be imaged with Vilber.

Newton Fluorescent molecules IF-NIR

The below dyes can be used with the Newton 7.0 systems:

Newton Fluorescent molecules

Imaging Modes – Bioluminescence

Bioluminescence imaging can be used to detect luciferase-tagged molecules at the femtogram level.

 

Newton 7.0 Bioluminescence

Imaging Modes – Multispectral Imaging

Multispectral in vivo imaging is possible by using different luciferase enzyme/substrate pairs or by using different fluorescent dyes.

Signals can be overlaid within the same image, up to 3 reporters can be imaged simultaneously.

Newton 7.0 Multispectral Imaging

Imaging Modes – Longitudinal Imaging

Images acquired at different time points can be arranged to form a longitudinal image sequence. For example, a time series could be constructed from images acquired on different days following an experimental treatment.

The software then compares the image data throughout the experimental treatment.

 

Newton 7.0 Longitudinal Imaging

Applications – Arthritis

Inflammatory responses can be assessed using non-invasive fluorescence biomarker imaging in a preclinical model of rheumatoid arthritis.

 

 

Newton application Arthritis

Applications – Tumor Monitoring

Tumor progression can be monitored after establishment of orthotopic tumors in mice. The mouse brain was injected with 10,000 (fig.left ) and 50,000 (fig.right ) cancer cells expressing luciferase.

After a 6 weeks, tumors were formed, where signal was dependent on tumor cell injection quantity.

Newton Tumor Monitoring

Applications – Biodistribution

Using the Vilber imaging system, researchers investigated the biodistribution of doxorubicin hydrochloride-loaded nanogels in rats (Sprague–Dawley, 220–250 g), click here for the link to the article abstract. The fluorescent signal of DOX was detected and monitored over eight hours, seen right.

 

Newton Biodistribution

Applications – Biodistribution

The major organs were dissected 10 h after oral administration and observed ex vivo.

Signal quantification demonstrated that organs harvested from rats treated with doxorubicin hydrochloride-loaded nanogels group exhibited significantly higher retention of doxorubicin hydrochloride compared to rats treated with doxorubicin hydrochloride alone.

Newton Biodistribution Organs

Applications – Biodistribution

In vivo fluorescence imaging of FITC-BSA nanoparticle in the Turbot fish.

After 36 h, the heart and liver were dissected and visualized nanoparticle retention was identified.

 

Newton Biodistribution Fish

Applications – Gastrointestinal Pathologies

Bioluminescent enterotoxic E. coli (ETEC) is tracked through the mouse intestine, demonstrating the colonization dynamics across the GI tract. Click here for the link to the article abstract.

Streptomycin-treated BALB/c mice were inoculated with E. coli bacteria via gavage with pRMkluc-tagged ETEC and pRMkluc-tagged E. coli K-12.  Luciferin was administered intraperitoneally prior to imaging.

After inoculation, bioluminescence was localized to the small intestine. 48 hours post-inoculation, the bioluminescent signals indicated bacterial passage through the mouse intestine. Bioluminescent signals were detected in the mouse intestine up to 120 h post-inoculation.

After 120 h of E. coli infection, mouse gastrointestinal tracts were extracted to perform ex vivo imaging. Intestinal tract dissection included the esophagus to rectum.

ETEC were localized in the proximal mouse ileum approximately 6 cm from the cecum, whereas the E. coli K-12 ol signals were identified in the cecum and in the proximal colon.

 

Newton Gastrointestinal Pathologies

Applications – Infection Tracking

BALB/c mice were intraperitoneally inoculated with E. coli K-12 tagged with pRMkluc or E. coli K-12 tagged with pBR322 (incubated with luciferin). Click here for a link to the article abstract.

After 1 h of infection, bioluminescent signal emission from the animals was captured.

Mice infected with E. coli K-12 harboring pBR322 did not exhibit bioluminescent emission (Fig.B). However, mice infected with E. coli harboring pRMkluc emitted bioluminescent signals detected in the mouse inoculation zone (Fig.A).

Newton Infection Tracking

Applications – Toxicology

Screen localization dynamics of fluorescently-tagged drugs. Investigators injected a Cy5.5-tagged drug and tracked it’s spread systemically in the mouse.

 

 

 

 

Newton Toxicology

Supplier

Vilber Lourmat S.A.
show all products

Specifications

Performance

Bioluminescence detection : femtogram level
Fluorescence detection : picogram level

Camera & Optics

Scientific grade CCD camera
Grade 0, zero defect
400-900nm / 4.8 O.D.
Image resolution: 10 megapixels
Native resolution: 2160×2160

Motorized V.070 lens: f:0.70
Minimum: 6x6cm
Maximum: 20x20cm

Animal Management

BIOSTHESIA gas anesthesia module
Heated table
Choice of animal breather for 1, 3 or 5 mice

Hardware Capabilities

Intelligent Darkroom concept
Fully-automatic system
• Motorized optical lens
• Motorized filter wheel
• Software controlled lighting
• Automatic visible lighting adjustment
• Auto-focus & Auto-exposure

Illumination & Filters

Epi-illumination
8 excitation channels from blue to IR
10 position filter wheel
Large choice of up to 9 customer made narrow
bandpass emission filters

Related products

If you continue we assume that you consent to receive all cookies on this website. More information

My Cart